Diamond BU-50

Technische Dokumentation

DIAMOND ANTENNA CORPORATION 15-1, 1-chome, Sugamo, Toshima-ku, Tokyo 170-0002, Japan,

Tel. +81-3-3947-1411 Fax: +81-3-3944-2981

eMail-address: overseas@diamond-ant.co.jp

Merkmale

Um bei der Speisung einer symmetrischen Antenne mittels Koaxial-Kabel einen rückwirkungsfreien Übergang des symmetrischen auf ein unsymmetrisches System zu erreichen, muß eine Potentialtrennung erfolgen.

Gegentaktströme werden ungehindert durchgelassen, Gleichtaktströme hingegen werden mit > 25 dB unterdrückt.

Gegentaktströme sind die Hauptursache für TVI oder BCI über das Koaxialkabel.

Der Präzäsions-Strombalun BU-50 unterdrückt die störenden Gleichtaktströme effektiv.

Das Gehäuse des BU-50 ist absolut klimadicht verschweißt.

Verwendung

BU-50 kann für folgende Antennen benutzt werden.

λ/2-Dipol-Antennen, Yagi Antennen, Quad-Antennen oder andere symmetrische Kurzwellenantennen.

Beispiele für Einsatzmöglichkeiten

1) Der klassische λ/2-Draht-Dipol:

Lassen Sie die Dipoläste anfangs etwas länger und schneiden Sie diese unter Beobachtung des SWR die Dipol-Enden auf die richtige Länge. Der Balun kann auch für eine Mehrbandantenne mit je 2 Dipol-Ästen genutzt werden. Messen Sie dabei das SWR immer in der endgültigen Aufbauhöhe über dem Gelände.

- 2) Befestigen Sie den Antennendraht an den Öffnungen des Baluns und lassen Sie etwa 20 cm Draht mit angelöteter Öse überstehen und verbinden Sie die Öse mit dem Balun-Schraubanschluß.
- 3) Schrauben Sie das Koaxialkabel an den Balun. Um die Verbindung wasserdicht zu machen, verwenden Sie selbstvulkanisierendes Gummiband, welches bei der Verarbeitung auf die 1,5 bis 2fache Länge vorgedehnt werden muß.

Hinweis

- 1) Wenn das SWR nach dem Kürzen der Dipol-Enden nicht besser wird, ist die Antenne noch zu nah am Boden. Verändern Sie die Höhe der Antenne über dem Erdboden.
- 2) Die Benutzung von Antennendraht mit hohem Übergangswiderstand führt ebenfalls zu einem schlechteren SWR.

Technische Daten:

Typ: Strombalun

Frequenzbereich: 1,7 MHz bis 40,8 MHz

Impedanz: 50 Ohm bei einem SWR siehe Meßprotokoll

Leistung < 1,2 KW PEP

Gewicht 175 g

Made in Japan

Meßprotokoll:	Meßgerät MFJ-269			
Frequenz	SWR	Rs	Xs	Symmetrie-Differenzen
1,760	1,4	43	17	< 1 %
1,800	1,4	43	16 15	< 1 %
2,000	1,4	44 47	15 11	< 1 % < 1 %
3,500 4,000	1,2 1,2	48	11 10	< 1 %
7,000	1,2	50	6	< 1 %
7,500	1,1	50	6	< 1 %
10,000	1,0	50	4	< 1 %
10,500	1,0	50	4	< 1 %
14,000	1,0	50	2	< 1 %
14,500	1,0	50	2	< 1 %
18,000	1,0	50	3	< 1 %
18,500	1,0	50	3	< 1 %
21,000	1,1	50	4	< 1 %
21,500	1,1	50	4	< 1 %
24,000	1,1	49	6	< 1 %
24,500	1,1	49	6	< 1 %
28,000	1,2	45	7	< 1 %
29,700	1,2	43	7	< 1 %
40,000	1,3	38	9	< 1 %

